Planes
Normal form
Let a plane be in its parameter form and rearrange it:
\begin{align}
\vec{e}&=\vec{s}+k\vec{a}+t\vec{b}\ \ \ (k,t\in\mathbb{R})\\
\vec{e}-\vec{s}&=k\vec{a}+t\vec{b}\\
(\vec{e}-\vec{s})\cdot(\vec{a}\times\vec{b})&=(k\vec{a}+t\vec{b})\cdot(\vec{a}\times\vec{b})\\
[\vec{e}-\vec{s},\vec{a},\vec{b}]&=0
\end{align}
Written es determinant:
\begin{equation}
\begin{vmatrix}e_1-s_1&e_2-s_2&e_3-s_3\\a_1&a_2&a_3\\b_a&b_2&b_3\end{vmatrix} = 0
\end{equation}
Hesse normal form
The normal vector $\vec{n}=\vec{a}{\small\times}\vec{b}$ is perpendicular to $\vec{a}$ and $\vec{b}$.
The Hess normal form can now be derived:
\begin{align}
(\vec{e}-\vec{s})\vec{n}&=0\\
\vec{e}\vec{n}&=\vec{s}\vec{n}\\
\vec{e}\vec{n_0}&=d
\end{align}
$$\text{where}\ \ \ \vec{n_0}=\frac{\vec{n}}{|\vec{n}|}\ \ \ \text{and}\ \ \ \vec{d}=\vec{s}\vec{n_0}$$
Note: $|\vec{d}|$ is the distance between the plane and the origin.